In a Bind for Boxes

School supplies are in high demand right now, but not all the packaging has been designed. As a packaging engineer, you have been hired to create a box to ship individual binders. The dimensions for the binders are below.

Dimensions of binder: 9_4^3 inches by 1 inch by 11_2^1 inches

Task 1

Draw a net for a rectangular prism that will fit the binder. The dimensions for the binder are above, so be sure to label the sides. Remember a net must be in one piece and be able to fold into a three-dimensional figure.

Task 2

Draw the 3-dimensional diagram of the box you created above. Be sure to label side lengths.

Task 3

266.75 in2

Task 4

Now, design another box using a different 3-dimensional shape. Be sure to create the box for the same binder pictured in Task 1. Draw and label the diagram.

ask 1

MiPAC-MA.6.10 - In a Bind for Boxes Grade 6

Best

How many square inches of cardboard would be needed for the Task 4 design? Show your work.

	146192 /A112	
0 76	$11.5 \times 1 = 11.5$ $11.5 \times 9.75 = 112.12$	
4.65 1x4.75=	11.5 - L - J. March 224.25	
Task 6	2 24.25+9.79+11,5= 245.5	J

Which of your two boxes should the company choose to send the binders? Why? Explain your reasoning.

the company should sell the 3-dimensioned shape from task 2. because it has a bigger Surface area, and that means it has more room.